On fundamental solutions of higher‐order space‐fractional Dirac equations

نویسندگان

چکیده

Starting from the pseudo-differential decomposition D = ( − Δ ) 1 2 H of Dirac operator ∑ j n e ∂ x in terms fractional order and Riesz–Hilbert type we will investigate fundamental solutions space-fractional equation Lévy–Feller t Φ α , ; θ exp i π involving Laplacian α, with 2m≤α < 2m + m ∈ ℕ), exponentiation as hypercomplex counterpart transform carrying skewness parameter θ, values range | ≤ min { }. Such model problem permits us to obtain counterparts for higher-order heat-type equations F M κ 2,3 … case where even powers resp. odd m) 1) are being considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions of the multiconfiguration Dirac-Fock equations

The multiconfiguration Dirac-Fock (MCDF) model uses a linear combination of Slater determinants to approximate the electronic N -body wave function of a relativistic molecular system, resulting in a coupled system of nonlinear eigenvalue equations, the MCDF equations. In this paper, we prove the existence of solutions of these equations in the weakly relativistic regime. First, using a new vari...

متن کامل

Averaging for Fundamental Solutions of Parabolic Equations

Herein, an averaging theory for the solutions to Cauchy initial value problems of arbitrary order, "-dependent parabolic partial di erential equations is developed. Indeed, by directly developing bounds between the derivatives of the fundamental solution to such an equation and derivatives of the fundamental solution of an \averaged" parabolic equation, we bring forth a novel approach to compar...

متن کامل

Particle-Like Solutions of the Einstein-Dirac-Maxwell Equations

We consider the coupled Einstein-Dirac-Maxwell equations for a static, spherically symmetric system of two fermions in a singlet spinor state. Soliton-like solutions are constructed numerically. The stability and the properties of the ground state solutions are discussed for different values of the electromagnetic coupling constant. We find solutions even when the electromagnetic coupling is so...

متن کامل

Particle-Like Solutions of the Einstein-Dirac Equations

The coupled Einstein-Dirac equations for a static, spherically symmetric system of two fermions in a singlet spinor state are derived. Using numerical methods, we construct an infinite number of soliton-like solutions of these equations. The stability of the solutions is analyzed. For weak coupling (i.e., small rest mass of the fermions), all the solutions are linearly stable (with respect to s...

متن کامل

The Size of the Fundamental Solutions of Consecutive Pell Equations

] (D) = log X1/ log X0. We prove here that ] (D) can be arbitrarily large. Indeed, we exhibit an infinite family of values of D for which ] (D) ^ D1/6/ log D. We also provide some heuristic reasoning which suggests that there exists an infinitude of values of D for which ] (D) ^`_ D log log D/ log D, and that this is the best possible result under the Extended Riemann Hypothesis. Finally, we pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in The Applied Sciences

سال: 2021

ISSN: ['1099-1476', '0170-4214']

DOI: https://doi.org/10.1002/mma.7714